If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-3900+100x=0
a = 1; b = 100; c = -3900;
Δ = b2-4ac
Δ = 1002-4·1·(-3900)
Δ = 25600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25600}=160$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-160}{2*1}=\frac{-260}{2} =-130 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+160}{2*1}=\frac{60}{2} =30 $
| 5.3=r+6.5 | | 1/2x=1/4x-1/6 | | (x-1)(x-2)=101/(100)^2 | | .4t^2-t-4=0 | | 15x2-18x-68=0 | | 3x^2+5x-1300=0 | | 6x²+12x-18=0 | | (x−1)(x+6)=18 | | x=7,x^2-6x+4= | | 9=27^3x-5 | | 9=273^x-5 | | 42x-61=30x+23 | | 0.4y+1=1.6y-5 | | 0.4y+1=1.6y-23 | | t^2-24t+128=0 | | 6x-5=17x-5x | | x=-2/3,x=-5 | | n/(n+10.5438)=0.0314 | | 16^(2x+1)=28 | | l+120/l=23 | | l+(120/l)=23 | | 3x+12=4x-3+5 | | 22=-2*3x | | 22=2*3x | | 9d-3=5d+17 | | 5x-2=16-4x | | 4r-9=3r+5 | | 4(3k+5)=-16 | | 5(2^3x+4)=1/6^x | | 10=k*90 | | 3(2x+)=(x+1) | | x^2-46x+8400=0 |